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Normal acid-base homeostasis is severely challenged in the
intensive care setting. In this review, we address acid-base
disturbances, with a special focus on the use of continuous
(rather than intermittent) extracorporeal technologies in
critical ill patients with acute kidney injury. We consider
hypercapnic acidosis and lactic acidosis as examples in which
continuous modalities may have different roles and
indications than the traditional intermittent approaches to
renal replacement therapy. Hypercapnic acidosis develops as
a consequence of alveolar hypoventilation. In this condition,
correction of pH above 7.2 is not currently recommended,
and may even abrogate the beneficial effects of hypercapnic
acidosis on overall outcomes. Extracorporeal technologies
support lung protection while maintaining overall patient
homeostasis. Similarly, in lactic acidosis, current evidence
does not support bicarbonate infusions to correct acidosis.
The management of lactic acidosis should correct the
underlying causative disturbances. Most often, lactic acidosis
is a biomarker denoting unfavorable outcomes, rather than
an intrinsic pathogenetic mechanism. Extracorporeal
procedures may assist in the removal of pathogenic drugs or
toxins, as well as partially correcting acidemia. Whether or
not these approaches will permit normalization of systemic
pH, and the impact of these approaches on patient
outcomes, needs to be addressed with prospective controlled
trials.
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‘The constancy of the milieu supposes a perfection of the
organism such that the external variations are at each
instant compensated for and equilibrated.... All of the
vital mechanisms, however varied they may be, have
always one goal, to maintain the uniformity of the
conditions of life in the internal environment.... The
stability of the internal environment is the condition for
the free and independent life, Claude Bernard'

Critically ill patients are faced with severe homeostatic
challenges to the ‘milieu interiéur)' Advances in the under-
standing of physiological processes’ and emerging extra-
corporeal technologies provide opportunities to restore
homeostasis and to hasten the recovery of a ‘free and
independent life. To achieve this goal, a variety of inputs
must be amalgamated, including biochemistry, physical
chemistry, physiology, pharmacology, nephrology, and
critical care. When such patients develop acute kidney injury
(AKI) and acid-base disorders requiring intermittent hemo-
dialysis or continuous renal replacement therapy (CRRT), the
process by which buffers are delivered changes: instead of
infusion into the central circulation, buffers are infused into
the extracorporeal circuit, either directly (hemoperfusion)
or across the membrane (dialysis).3 These differences in
delivery, as well as the continuous adjustment of buffer
stores permitted by continuous modalities, has changed
the approach to acid-base disturbances during CRRT. This
review focuses on the contemporary management of
hypercapnic respiratory acidosis (HCA) and lactic acidosis
in the critically ill patient with AKI. We also highlight the
acid-base implications of the use of citrate anticoagulation
during CRRT.

We use the ‘physiological’ approach®* as a simple and
serviceable method applicable to patients with compromised
renal function in the critical care setting. Recent reviews '
address alternative approaches for interpreting acid-base
disorders. We assume, in the absence of prospective compar-
isons, that the application of the physiological approach
or alternative interpretations of acid-base equilibrium is
ultimately focused on providing optimal patient outcomes.

ACUTE AND CHRONIC RESPIRATORY ACIDOSIS
Figure 1 emphasizes the central role of the partial pressure of
dissolved carbon dioxide (the PaCO,) in the normal
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Figure 1| Central role of carbon dioxide (CO,) in the
regulation of epithelial proton secretory processes. A number
of proton secretory mechanisms move H " across the apical
membrane into the luminal membrane (urinary compartment).
If the luminal buffer is bicarbonate, then the result is bicarbonate
reabsorption without any net acid excretion. If the luminal
bicarbonate has been reduced (for example, in the distal
nephron), then there are non-bicarbonate luminal buffers that will
accept the secreted protons, with generation of an intracellular
base equivalent. In the presence of carbonic anhydrase, ‘new’
bicarbonate is generated and delivered to the systemic
circulation. The consequence of a primary imposed increase in
arterial CO, pressure will be acute respiratory acidosis, and the
slower adaptation will produce a secondary metabolic alkalosis
that reduces the extent of the primary acidosis due to CO,
retention.?

regulation of proton secretion, titration of luminal buffers
such as phosphate and ammonia (‘net acid excretion’), and
de novo generation of bicarbonate that is delivered to the
blood side of renal epithelial cells. This schema provides a
physiological framework to understand the primary acid-base
disturbances, and the secondary compensations to those
disturbances.>* When AKI develops, net acid excretion is
limited and external buffering becomes necessary to maintain
acid-base homeostasis.

Hypercapnic acidosis: physiological compensatory
mechanisms
Acute hypercapnia acidifies body fluids and titrates non-
bicarbonate buffers, with an immediate increase in plasma
bicarbonate that can be readily estimated.” Sustained
hypercapnia causes an additional, larger increase in plasma
bicarbonate concentration by stimulating net renal acid
excretion and generation of ‘new bicarbonate’ (Figure 1); a
new steady state is reached within 3-5 days in dogs, but the
response pattern has not been as well defined in humans.
Hypercapnia stimulates the central drive to respiration.
Exposure to an 8 mm Hg increase in end-tidal PaCO, increases
the ventilatory chemosensitivity to acute hypoxia® and plasma
bicarbonate will be secondarily elevated by de novo renal
bicarbonate generation. Peripheral and central chemoreceptors
are primarily stimulated by H™; rapid diffusion of CO, across
the blood-brain barrier permits changes in the arterial dissolved
CO, tension (PaCO,) to translate into rapid changes in the pH
at the central respiratory chemoreceptor.”

Respiratory failure and AKI
Respiratory acidosis accompanies alveolar hypoventilation
during acute lung injury (ALI) and acute respiratory distress
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syndrome (ARDS). The annual estimates in the US are
190,600 cases of ALI, associated with 74,500 deaths and 3.6
million hospital days.'” The ratio of partial pressure of
oxygen to the fraction of inspired oxygen (paO,/FiO, ratio)
decreases to <300 in ALI and <200 in ARDS."" ALI and
ARDS often require mechanically assisted ventilation,'®"?
and pulmonary edema can develop even in the ‘normal’
range of pulmonary capillary pressure owing to increased
capillary and alveolar permeability, and alterations in the
clearance of intra-alveolar fluid."

The prevalence of AKI is similar to that of ARD
When AKI complicates ARDS, the mortality risk is increased
because of severe inflammation,'® fluid overload, multiple
electrolyte disorders, and metabolic and respiratory acido-
sis.'” Bicarbonate infusion may transiently control acidemia,
but associated risks include worsened hypoxemia from
volume overload, and intracellular acidosis induced by rapid
intracellular diffusion of CO,.'® Early initiation of renal
replacement therapy may be required to manage fluid
overload!® and severe systemic acidosis,!”"'”?° but the choice
of modalities has an impact on the management of acid-base
disorders.

14,15
S.

Management of ALl and hypercapnic acidosis

The landmark ARDS Network study”' of low tidal volume
ventilation and low plateau end inspiration showed reduced
mortality and decreased number of days of ventilator
support. A subsequent comparison by the ARDS Network
trial comparing higher and lower levels of positive end-
expiratory pressure and low tidal volumes demonstrated a
mortality of 26%, similar to 30% mortality seen in the low
tidal volume trial.>?> On the basis of these studies, ARDS
patients are currently managed with initial lower tidal
volumes (4 to 6ml/kg of predicted body weight) and a
plateau pressure <30cm of water, modulating positive
end-expiratory pressure and fraction of inspired oxygen
to maintain adequate oxygenation while ‘permitting’ CO,
retention.”>?> This strategy is associated with respiratory
acidosis, but minimizes barotrauma, decreases inflammation,
and increases the number of ventilator-free days and
survival.?® During low tidal volume respiration, PaCO,
increased by 8.9kPa (66.5mmHg) and pH decreased to
7.2, levels that were generally ‘well tolerated” as long as tissue
perfusion and oxygenation were preserved.”” This approach is
now nearly universal in the critical care setting and presents
an opportunity to consider the physiopathology and
management of hypercapnic acidosis, especially for patients
with concurrent AKI who receive CRRT.

Hypercapnic acidosis: controversies

Acute HCA appears to be well tolerated,””*® but robust
neuroendocrine responses are required to compensate for the
direct negative inotropic and vasodilating effects of elevated
PaCO,.?**® Mechanisms to defend intracellular pH must also
be intact, particularly in critical organs such as the brain
and heart.”>° Cerebral autoregulation is impaired in septic
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shock, and thus hypotension can cause severe cerebral
hypoperfusion, especially in patients with hypercapnia, which
has raised concerns about increased capillary permeability
and cerebral water content, and worsening encephalopathy
in septic patients exposed to permissive hypercapnia.”’ Thus,
in sepsis and AKI, hypercapnia may set the stage for
worsened encephalopathy, and HCA should be avoided in
cases of intracranial pathology or when increased intracranial
pressure is present.’?

Concerns have also recently been raised regarding the
frequent use of paralytic agents,”” the risk of decreased
neuromuscular function,” and the theoretical potential for
hypercapnia to cause intracellular acidosis, myocardial
depression, pulmonary and intracranial hypertension, and
increased catecholamine secretion.” The anti-inflammatory
effects of HCA may impair host defenses.”’ Purthermore,
acidosis may reduce alveolar fluid clearance by inducing
endocytosis of alveolar epithelial cell Na™/K* ATPase.**>’
These latter concerns are especially important in view of
recent studies demonstrating the importance of minimizing
alveolar fluid accumulation.'""?

In spite of these theoretical concerns, clinical studies
suggest that HCA has very few detrimental effects’® and
improves arterial and tissue oxygenation.”” Although the
average PaCO, in the low tidal ventilation arm of the ARDS
Network study was only 5mmHg higher than in the
conventional arm,?' additional clinical studies support the
safety of more severe HCA in ARDS***® even among patients
randomized to higher tidal volume ventilation.** Although
experimental studies suggest that hypercapnia may delay
weaning from ventilation,*! the ARDS Network studies
actually demonstrate increased number of ventilator-free
days among hypercapnic patients.”"*

The study design of the original tidal volume ARDS
Network trial permitted bicarbonate administration to buffer
acidosis to a plasma pH>7.2.>' More recent evidence
questions this approach, and suggests that the acidosis may
be beneficial per se. HCA reduces oxidative stress and
generation of reactive oxygen species in experimental
endotoxin-induced lung injury via multiple processes,
including antioxidant effects,** and attenuates the expression
of nuclear factor-xB, a key regulator of the expression of
multiple genes involved in cytokine cascades and inflamma-
tory responses.”"“’43

Barotrauma is associated with AKI in experimental
animals,**#® and recent studies have suggested that lung-
protective ventilation may also protect against AKL'” In the
ARDS Network trial,?! patients ventilated with low tidal
volume strategies appeared to require less intermittent
hemodialysis, but this needs to be confirmed in prospective
trials with more sensitive and less subjective outcome
measures than initiation of dialysis.

The results of clinical and experimental models of ALI and
sepsis indicate that, although controversia, HCA may be
beneficial but may not be appropriate for all critically ill
patients: among patients with advanced age and multiple
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comorbidities, the use of lung-protective strategies could
have detrimental effects.”® It is unclear whether patients with
compromised cardiovascular, renal, and cerebral function
will realize a net benefit because the strong neurosympathetic
activation and cardiovascular responses invoked by HCA can
cause imbalanced myocardial oxygen delivery, renal vaso-
constriction, oliguria, pulmonary hypertension, and worsen-
ing acidemia.””*’

Bicarbonate in the management of respiratory acidosis:
friend or foe?

The usual mode of administration of sodium bicarbonate
(via systemic infusion) may worsen existing hypercapnia
whenever the compensatory respiratory reflexes or alveolar
ventilation are compromised, or in mechanically ventilated
patients. Low tidal volume protocols provide guidance for
balancing risk/benefit between lung-protective ventilatory
strategies and the treatment of hypercapnic acidosis; the
subject is extensively reviewed by Kallet et al.>> The question
whether HCA should be treated to a pH >7.2 is
controversial.*>*° Early studies*® using sodium bicarbo-
nate infusion to correct acidosis showed multiple adverse
effects including hyperosmolality, congestive heart failure
with volume expansion, decreased ionized calcium plasma
concentration, and intracellular acidosis.’® Bicarbonate
buffering did not improve hemodynamic variables, tissue
oxygen delivery, or uptake,”’>*>* and enormous amounts of
bicarbonate may be needed to produce small increases in
arterial pH.”> This phenomena has been described as an
increased bicarbonate ‘space’ or volume of distribution, and
probably represents titration of intracellular and intraosseous
buffer stores during systemic acidosis.>

Extracorporeal techniques and acid-base disorders
Renal replacement therapy can be used to correct systemic
acidemia; however, with high-efficiency intermittent hemo-
dialysis, the rapid flux of bicarbonate from dialysate to
patient can generate excess CO,, requiring hyperventilation
to maintain the acid-base balance, especially if overt
metabolic alkalosis is the result.”® This concern may not
apply to CRRT because the rate of buffer delivery is much
slower than that with intermittent hemodialysis. Case reports
have described the successful use of CRRT to correct
combined respiratory and metabolic acidosis in the setting
of AKL>

Total CO, can be removed by convective hemofiltration,’
if at the same time the ultrafiltered fluid is replaced by a
bicarbonate-free solution. In a proof-of-concept model in
sheep, Cressoni et al.”® used venovenous hemofiltration with
replacement fluid containing NaOH. Half of the metabolic
production of CO, was removed, permitting a 50% reduction
in minute ventilation while maintaining the PaCO, level in
the range of 35 to 38 mm Hg, stable blood pH (pH decreased
only by 0.1 unit), and mild metabolic acidosis (average
plasma bicarbonate level 20 mmol/l). Strategies using triso-
dium citrate in the prefiltered, bicarbonate-free replacement
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fluid, both as a source of alkali base and as anticoagulant,””®

may add additional advantages to the device design and
acid-base control during CRRT. Concerns about the use of
citrate have been described,” and are addressed later in this
review. These exciting studies indicate that CO, removal by
hemofiltration may be—with further refinement—an effec-
tive adjunctive treatment of systemic acidosis for patients
with respiratory failure.’” This development represents
another example of the use of CRRT techniques for ‘overall
patient support, rather than just replacement of compro-
mised renal function.®

Alternative extracorporeal approaches to severe hypercap-
nia include a venovenous circuit in which a CO,-removing
cartridge and a hemofilter are placed in series, performing
extracorporeal CO, removal.®”® When used in the clinical
setting, the device removes CO, and controls PaCO, and
plasma pH in spite of hypoventilation. Another approach
provides CO, control by arteriovenous CO,-removal de-
vices®” that do not have a blood pump, reducing the potential
for hemolysis and the complexity of the extracorporeal
circuit. Limitations of these devices include lack of
extracorporeal blood flow control and risk of bleeding and
limb ischemia.’®®'" Development of more efficient devices
capable of removing a substantial amount of CO, production
(30-100%) with blood flows of 250-500 ml/min is foresee-
able. Future ARDS management may include a minimally
invasive extracorporeal CO, removal circuit associated with
non-invasive ventilation, and thus avoid intubation, mini-
mize sedation, and prevent ventilator-induced ALI and
nosocomial infections.®’

Summary and conclusions: hypercapnic acidosis
Contemporary pulmonary-protective management strategies
have demonstrated a reduction in mortality among patients
with ALI/ARDS. The resulting hypercapnic acidosis is
generally considered an acceptable side effect among selected
patients as long as arterial pH can be maintained at a safe
level (=7.2). Central infusion of bicarbonate is associated
with complications including volume overload or hypertonic
challenge, worsening hypercapnia and lactic acidosis, and is
not currently recommended unless metabolic or mixed
acidosis coexist. Early initiation of CRRT may be considered
for AKI and combined respiratory and metabolic acidosis,
and by its continuous nature will lessen the adverse effects of
bicarbonate administration. Newer extracorporeal techni-
ques, enabling acid-base control by removal of CO, from the
extracorporeal circuit, may be valuable options to facilitate
lung-protective strategies while managing the consequences
of hypercatabolism, systemic acidosis, and fluid overload.

METABOLIC ACIDOSIS

Gunnerson and Kellum® reviewed the prevalence of meta-
bolic acidosis in the intensive care setting, and concluded that
metabolic acidosis was far more common than lactic acidosis.
Since that time, the use of CRRT, especially with citrate
anticoagulation, has become much more common and
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essentially provides a continuous source of bicarbonate (or
citrate as a bicarbonate equivalent) so that the prevalence
and/or severity of hyperchloremic acidosis may well be
reduced among patients receiving CRRT. If the prevalence of
hyperchloremic acidosis is lessened by CRRT, then the
occurrence of anion-gap metabolic acidosis, such as lactic
acidosis, will be relatively more common.

Lactic acidosis

Lactic acidosis is associated with a high mortality, and
lactate levels predict outcome.®® Improving hemodynamic
and oxygen delivery improved the survival of patients with
severe sepsis and lactic acidosis, and a significant benefit for
early lactate clearance was shown for mortality in severe
sepsis.”%® Therapy was directed at global tissue hypoxia
rather than at lactate levels per se, and did not demonstrate
any utility of management targeted at the lactate levels rather
than simply optimizing overall hemodynamic status. Never-
theless, the Surviving Sepsis Campaign®® regards sepsis with
lactate level >4 mmol/l as an indication for aggressive
treatment protocols.

A randomized, controlled study’® showed decreased mor-
bidity using lactate-directed strategies, but results were limited to
postcardiac surgery patients. Recently, Jansen et al.”' examined
whether intensive care patients with lactate levels >3 mmol/l
benefited from therapies aimed at reducing lactic acid levels
by 20% within 2h, compared with standard management.
When adjusted for predefined risk factors, hospital mortality
was reduced by 40%, disease severity was lower, ionotropes were
stopped earlier, and patients weaned from mechanical ventila-
tion and discharged from the intensive care unit sooner,
suggesting benefit from initial lactate monitoring and interven-
tion. However, the lactate-managed group did not have more
rapid reductions in serum lactate than control patients.”" This
study underscores the importance of lactate as a prognosis
indicator that can signal underlying deterioration, prompt more
aggressive management, and also help to avoid unnecessary
treatment when the condition stabilizes.

64,65

Pathophysiology

Pyruvate is the precursor of lactate and is produced in
the cytoplasm from glucose metabolism via glycolysis by
the Embden—Meyerhof pathway.”> A healthy 70-kg adult
produces ~ 1300 mmol lactate a day.**® Skeletal muscle,
brain, red blood cells, and renal medulla are responsible for
the majority of lactate production. Both the liver and kidney
are important lactate-consuming organs, and under normal
conditions the liver takes up ~60% of the circulating
lactate.”” Lactate can be metabolized by the kidney, where
filtered lactate is almost completely reabsorbed in the
proximal convoluted tubule and metabolized.”*

Pyruvate normally undergoes oxidative decarboxylation
by mitochondrial pyruvate dehydrogenase (PDH) to acetyl-
coenzyme A, and then ultimately to CO, and H,O. This
process results in the synthesis of 36 mol of adenosine
triphosphate (ATP) and requires oxidized nicotinamide
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adenine dinucleotide (NAD "). Pyruvate can also enter the
Cori cycle in the liver and renal cortex and be converted back
to glucose. Oxidative phosphorylation, ATP synthesis, and
reoxidation of NADH are inhibited during hypoxia, leading
to increased NADH/NAD " ratio and conversion of pyruvate
to lactate, with synthesis of 2 molecules of ATP, rather than
36 molecules generated via the tricarboxylic acid cycle. The
overall result of anaerobic metabolism is hyperlactacidemia,
elevated lactate/pyruvate ratio, greater glucose utilization,
and lower energy production.

Lactic acidosis occurs whenever production of lactate
exceeds its utilization. In most cases of clinically significant
lactic acidosis, there is evidence of defective utilization, as
well as increased production, depending on the etiology of
lactic acidosis. Severe acidosis, by itself, has been shown to
impair lactate uptake by the liver in experimental animals.”
When exposed to severe hypoxia, liver lactate clearance is
decreased, whereas kidney lactate clearance continues. The
ability of the kidney to remove lactate is increased by
acidosis: although acidosis inhibits hepatic metabolism, it
increases lactate uptake and utilization by stimulating the
activity of phosphoenolpyruvate carboxykinase.”*”®

Traditionally, lactic acidosis has been characterized by
impaired mitochondrial oxidative capacity in the setting of
tissue hypoxia (Type A) or dysregulation of cell metabolism
rather than hypoxia (Type B).”>””®* Type B lactic acidosis
is divided into Type Bl (related to underlying diseases like
malignancies or liver disease), Type B2 (related to the effect
of drugs and toxins), and Type B3 (associated with inborn
errors of metabolism).®® The commonest drugs associated
with Type B2 lactic acidosis include biguanides, reverse-
transcriptase inhibitors, aspirin, propofol, and linezolid®®’
among others.*****” In critically ill patients, the clinical
distinction between Type A and Type B lactic acidosis may
not hold; patients can have dysregulation of cellular
metabolism as well as hypoxia.®®

Lactic acidosis and sepsis
Sepsis is a common cause of lactic acidosis in the intensive
care unit, traditionally classified as Type A lactic acidosis
because of inadequate oxygen supply and amplified anaerobic
metabolism. However, the lack of response to increased
oxygen delivery, the absence of tissue hypoxia, and normal
tissue ATP levels suggest that lactate formation during sepsis
is due to dysregulation of cellular metabolism.””**%°

The source of lactic acid in sepsis is controversial.
Decreased clearance of lactate rather than increased produc-
tion has been demonstrated in sepsis.”® In addition, increased
pyruvate production, decreased PDH activity, regional
differences in lactate production, and decreased clearance of
lactate have also been implicated as possible contributors to
lactic acidosis.”’* Decreased muscle PDH activity has been
shown in sepsis, and its restoration by dichloroacetate, an
activator of PDH,””® suggested that lactic acidosis during
sepsis may be due to functional inhibition of PDH, with
enhanced conversion of pyruvate to lactate.
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Treatment of lactic acidosis

Traditional sodium bicarbonate infusion therapy. Clinical
studies do not currently support the routine use of sodium
bicarbonate infusion to treat lactic acidosis.”> Central
administration of sodium bicarbonate may increase lactate
production, decrease portal vein flow, lower intracellular pH,
and worsen cardiac output.'®*”*”?® Bicarbonate infusion
can increase extracellular pH only if ventilation removes
the excess CO,; otherwise, hypercapnia lowers intracellular
pH and impairs cellular function, with myocardial®® and
cerebral*® intracellular acidosis. Bicarbonate can worsen
tissue oxygen delivery if arterial pH increases more than
intracellular pH, with a leftward shift in the oxyhemoglobin
dissociation curve. If tissue hypoxia is present, the use of
bicarbonate can stimulate glycolysis mediated by the pH-
sensitive, rate-limiting enzyme phosphofructokinase, and
increase lactate production.”

A recent survey'” highlighted the uncertainty about
infusing bicarbonate during metabolic acidosis, and showed
significant differences between critical care and nephrology
specialists. For example, 40% of the intensivists would not
give bicarbonate unless pH was <7.0, but only 6% of
nephrologists would wait until pH was that low. Current
consensus is that unless efforts are focused on reversing the
underlying defects responsible for the acidosis, bicarbonate
infusion will not be beneficial.'®" The Surviving Sepsis
Campaign® recommended holding bicarbonate for lactic
acidosis unless systemic pH <7.15; others have recom-
mended an even lower threshold of <7.0.>°

Sodium bicarbonate infusion has been studied in two
randomized trials in patients with sepsis-induced lactic
acidosis. Cooper et al.*® infused sodium bicarbonate to 14
critically ill patients, without any improvement in cardiac
hemodynamics, and with decreased ionized serum calcium
and increased PaCO,. Mathieu et al.>* randomized 10
critically ill patients to sequential infusion of either sodium
bicarbonate or sodium chloride, without any significant
differences in measures of lactate production or O, delivery.
Bicarbonate therapy can improve systemic pH if ventilation
and arterial oxygenation are adequate, and shock has been
reversed.*

Carbicarb, an equimolecular mixture of sodium bicarbo-
nate and sodium carbonate, has a buffering capacity similar
to sodium bicarbonate but generates less carbon dioxide
because its pH and buffer poise is higher than a pure
bicarbonate solution. In animal models of hypoxic lactic
acidosis, Carbicarb reduced circulating lactate and improved
tissue and blood acid-base status compared with sodium
bicarbonate.'®*?%  Controlled studies with Carbicarb in
patients with metabolic studies are lacking.

Other treatments. Dichloroacetic acid stimulates the activ-
ity of mitochondrial PDH enzyme complex indirectly through
inhibition of the PDH kinase, and hence decreases lactate
production.”  dichloroacetic acid also exerts a positive
inotropic effect that has been attributed to improvement in
myocardial glucose use and high-energy phosphate production.
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Data from animal studies” and one placebo-controlled
double-blind clinical trial'® have shown that dichloroacetic
acid improved acid-base status, but the magnitude of change
was small, without any improvement in hemodynamics nor
survival.

CRRT and lactic acidosis. Small observational studies using
CRRT with bicarbonate-based solutions showed efficient
management of severe Type A lactic acidosis in hemodyna-
mically unstable patients.'®” !> Levraut et al.'"> used conti-
nuous venovenous hemodiafiltration in 10 critically ill
patients with stable lactic acidemia. Hemofilter lactate
clearance and endogenous total plasma lactate clearance
were measured; the median total plasma lactate clearance was
1379 ml/min, whereas the median hemofilter lactate clearance
was <40 ml/min. The use of lactate-buffered fluids is not
helpful, and in some cases leads to further increases in serum
lactate levels. Conversely, bicarbonate-buffered replacement
fluids allow correction of acidosis without exacerbation of
lactic acidosis.”* CRRT offers several practical and theoretical
advantages over traditional intermittent dialysis support and
central bicarbonate infusions that are worth emphasizing:
bicarbonate (or citrate, as a bicarbonate equivalent) can be
given in a prefilter solution with concurrent ultrafiltration so
that fluid overload is avoided; systemic acidosis is treated
with continuous titration of the added bicarbonate in the
extracorporeal circuit rather than central infusion; and
maintenance of normal ionized calcium in the setting of
effective bicarbonate addition. Evidence supporting this
approach is anecdotal at best; and prospective controlled
trials are worth considering.

Drug-induced lactic acidosis. Metformin inhibits hepatic
gluconeogenesis.''* The association of metformin with lactic
acidosis has been object of much debate.'’> At therapeutic
doses, metformin alone does not elevate plasma lactate
levels,''® and serum levels are not reliable predictors of
metformin-related toxicity.''” Metformin-associated lactic
acidosis is associated with increased intestinal lactic acid
production, impaired gluconeogenesis, glycogenolysis, mito-
chondrial respiration, and oxidative phosphorylation,''®
especially in the setting of shock and overdose.''” Metfor-
min-associated lactic acidosis has been associated with
mortality rates >30%,"'”'*>!?! especially when complicated
by multiple organ failure.'**

Pharmacokinetic studies have demonstrated that metformin is
exclusively eliminated by the kidneys.'” Metformin has a
molecular weight of 165Da, and is highly water soluble.
Hemodialysis and CRRT'**"° have been used successfully in
the treatment of metformin-associated lactic acidosis by correct-
ing the acidosis and removing metformin from plasma.''®"'®!%

Another biguanide, phenformin, was withdrawn from the
market because it was associated with lactic acidosis in 40 to
64 cases per 100,000 patient years.'”' Severe lactic acidosis
was associated with abnormally low systemic O, consump-
tion, despite normal or increased O, delivery.'*®

Lactic acidosis due to reverse-transcriptase inhibitors
is caused by mitochondrial toxicity leading to impaired
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pyruvate oxidation and increased lactate accumulation."”
Discontinuation of the causative agent is the mainstay
of management. Investigations on the use of riboflavin,
thiamine, and L-carnitine in improving mitochondrial
function are ongoing.'**™*! Treatment has included intensive
supportive therapy with intravenous bicarbonate, ventilator
support, and dialysis. Case reports have demonstrated
successful treatment of NRTI-induced lactic acidosis with
dialysis and CRRT."***

Summary and conclusions: lactic acidosis

Elevated serum lactate levels are useful for identifying
critically ill patients. There are well-documented associations
between lactic acidosis and adverse outcomes, but a
convincing benefit of bicarbonate infusion therapy has not
been demonstrated. Management of lactic acidosis should be
geared toward the causative mechanisms. In the setting of
AKI, extracorporeal techniques are useful in treating cases of
uncontrollable acidemia complicated by multiple organ
failure, and assist in the removal of causative toxins such as
metformin.

CRRT AND REGIONAL CITRATE ANTICOAGULATION

Regional citrate anticoagulation is increasingly used for
CRRT because it can provide effective anticoagulation of
the extracorporeal circuit and improve filter patency while
minimizing the risk of systemic bleeding.””'** However,
regional citrate anticoagulation has been associated with
significant acid-base derangements including both metabolic
alkalosis and metabolic acidosis.

Citrate (C4H,0O,, molecular weight 191 Da) is a small
negatively charged tricarboxylic acid that functions as the
first intermediate in the Krebs cycle. It is metabolized to cis-
aconitate, and then to p-isocitrate and a-ketoglutarate. All
three-carbon molecules are liberated as CO,, which can be
converted to bicarbonate, facilitated by carbonic anhydrase.
Citrate can also be transported out of the mitochondria into
the cytoplasm and broken down to acetyl CoA for fatty-acid
synthesis. Mitochondria-rich tissues such as liver, skeletal
muscles, and kidney possess a higher capacity for citrate
generation and elimination. As the highest pKa of citrate is
below physiological pH, citrate predominantly circulates as a
trivalent anion. Plasma levels of total citrate are normally low,
averaging 0.1 mmol/l, and most of the circulating citrate is
complexed with calcium, magnesium, and sodium."*’

When used as an anticoagulant for CRRT, citrate is
infused into the blood at the beginning of the extracorporeal
circuit and provides anticoagulation by chelating ionized
calcium (iCa™ ™). Optimal regional anticoagulation occurs
when the iCa™ " concentration in the extracorporeal circuit
is below 0.35mmol/l (0.7 mEq/1)."”>"*" The majority of
the calcium-citrate complex is freely filtered and lost in the
effluent; therefore, a systemic calcium infusion is required to
correct the ionized calcium and avoid systemic hypocalcemia.
The amount of citrate that is delivered to the systemic
circulation is determined by the citrate concentration in the
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prefilter infusion (‘replacement’) solution, the ultrafiltration
rate, and the relative flow rates of the replacement fluid and
the blood flow in the extracorporeal circuit. Any calcium-
citrate complex that returns to the patient is potentially
metabolized to bicarbonate by the liver, kidney, and skeletal
muscle.

Metabolic alkalosis

Metabolic conversion of citrate delivered from the extra-
corporeal circuit can result in an excessive alkali load. In
addition, citrate is used to prepare blood products, and
patients receiving large volumes of blood products, as well as
those receiving citrate during CRRT, may develop metabolic
alkalosis. Metabolic alkalosis can also be magnified by
acetate-containing total parenteral nutrition. During CRRT,
metabolic alkalosis can be managed by decreasing the
infusion rate of citrate or by using a lowered bicarbonate
concentration in the dialysate, as well as by careful
monitoring of other sources of alkali. Careful attention to
the systemic pH is especially important when patients are
being weaned from ventilator support; systemic alkalemia
suppresses the central drive to respiration and may impair
weaning.

Metabolic acidosis

As citrate is metabolized predominantly in the mitochondria
in the liver, skeletal muscle, and kidney, citrate metabolism
may be compromised in patients with cardiogenic shock with
reduced hepatic and muscle blood flow. Similarly, patients
with acute liver failure—particularly fulminant hepatic
failure—may be unable to adequately metabolize citrate
and can become acidotic because of continued bicarbonate
and citrate losses into the effluent of the extracorporeal
circuit. Citrate toxicity in the setting of liver failure is
characterized by low systemic iCa™ ", elevated total serum
calcium, and metabolic acidosis.'**?*> The accumulation of
citrate causes systemic iCa™’ " concentration to decrease,
whereas the bound fraction of calcium increases. When
calcium is infused to correct the low iCa™ ¥, most of the
calcium binds to citrate, causing a disproportionate rise in
total Ca while iCa™ ™ remains low. In this situation, the
‘calcium gap’ (total Ca minus iCa™ ™) or the ‘calcium ratio’
(total Ca/iCa™ ™) increases. Citrate toxicity is likely when the
ratio of total serum calcium to ionized calcium concentration
exceeds 2.5 when both total and ionized calcium are
measured in mmol/l, or >10 if total calcium is measured
in mg/dl. Citrate excess and toxicity can be corrected with a
reduction or discontinuation of citrate infusion, increased
dialysate flow rate to increase citrate loss across the dialysis
membrane when citrate is being infused in the prefilter
circuit, and increased calcium infusion to correct decreased
ionized calcium concentration.

CONCLUSION
Using the newer understanding of biochemical processes and
melding the sometimes paradoxical findings of basic and
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clinical research, critical care and nephrology specialists have
a key collaborative role in the management of critically ill
patients. Important and distinct differences have emerged
between potential side-effect profiles associated with tradi-
tional bicarbonate infusion and the addition of bicarbonate
or citrate as bicarbonate equivalents into the extracorporeal
circuit during CRRT. Whether these potential advantages will
convey clinical benefit needs to be assessed in a prospective
controlled multicentric study. At the very least, we emphasize
that these new approaches have altered the traditional view
of acid-base disorders in the intensive care unit. We propose
that these areas must be revisited and that the usual
proscriptions against bicarbonate infusion (via a central line)
may not be relevant when patients with respiratory acidosis
due to low tidal volume respiration, or severe metabolic
acidosis and lactacidemia, are receiving CRRT. A similar
approach could be developed with peritoneal dialysis'>® when
extracorporeal CRRT is not readily available.

When applying newer concepts and technologies in the
management of acid-base disorders in the intensive care unit,
the challenge resides in the conceptual integration and
interpretation of the interactions between basic science,
clinical outcomes research, critical care, nephrology, phar-
macology, and innovative extracorporeal technologies. These
interactions and collaborations make successful management
of such severely ill patients a major yet rewarding challenge,
especially with the goal of discharging such complex patients
with heightened prospects for returning to ‘the free and
independent life.
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