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Abstract
Critically ill COVID-19 patients are generally admitted to the 
ICU for respiratory insufficiency which can evolve into a mul-
tiple-organ dysfunction syndrome requiring extracorporeal 
organ support. Ongoing advances in technology and sci-
ence and progress in information technology support the 
development of integrated multi-organ support platforms 
for personalized treatment according to the changing needs 

of the patient. Based on pathophysiological derangements 
observed in COVID-19 patients, a rationale emerges for se-
quential extracorporeal therapies designed to remove in-
flammatory mediators and support different organ systems. 
In the absence of vaccines or direct therapy for COVID-19, 
extracorporeal therapies could represent an option to pre-
vent organ failure and improve survival. The enormous de-
mand in care for COVID-19 patients requires an immediate 
response from the scientific community. Thus, a detailed re-
view of the available technology is provided by experts fol-
lowed by a series of recommendation based on current ex-
perience and opinions, while waiting for generation of ro-
bust evidence from trials. © 2020 S. Karger AG, Basel
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The COVID-19 Pandemic

The World Health Organization declared COVID-19 
a pandemic. Although the vast majority of COVID posi-
tive patients suffer from mild or no symptoms, a propor-
tion of them require hospitalization or even admission to 
intensive care units (ICUs). These patients may develop 
acute kidney injury (AKI) and multiple organ failure 
(MOF) and may require extracorporeal organ support 
(ECOS) [1]. Kidney involvement in COVID-19 patients 
may precede, follow, or be concomitant with other organ 
system failure, and this situation may require fully com-
petent and trained personnel to implement all possible 
therapeutic options for critically ill patients.

The evolution of continuous renal replacement thera-
pies (CRRTs) from the initial description to the current 
technology [2–6, 8] has permitted worldwide use of ex-
tracorporeal therapies in critically ill patients (Fig. 1). In 
intensive care, severe AKI occurs mostly in the context of 
MOF. The term multiple organ support therapy (MOST), 

now termed “Extracorporeal Organ Support” (ECOS), 
encompasses all forms of organ support by an extracor-
poreal circuit (for instance, renal replacement therapies 
[RRTs], extracorporeal CO2 removal [ECCO2R], veno-
arterial or veno-venous [VV] extracorporeal membrane 
oxygenation [ECMO], liver support systems, hemoperfu-
sion, and various blood purification devices) [9]. Signifi-
cant advances in technology and science resulted in the 
development of new biomaterial, membrane design, and 
anticoagulation techniques [10], allowing for optimiza-
tion of treatment dose and modality [11, 12]. The possible 
role of extracorporeal techniques in restoring a balanced 
immune response by eliminating/deactivating inflamma-
tory mediators was explored [13]. The strategies included 
high-volume hemofiltration (HVHF), hemoperfusion, 
plasma exchange, coupled plasma filtration adsorption 
(CPFA), and the use of high cut-off (HCO) membranes 
and membranes with enhanced adsorption properties. In 
parallel, other forms of ECOS were developed, including 
ECCO2R, ECMO, ventricular assist devices, and extra-
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Fig. 1. A complete overview of 40 years of evolution in technology 
for extracorporeal therapies in the critically ill patient (modified 
from Ref. [3]). CAVHD, continuous arteriovenous hemodialysis; 
CAVHDF, continuous arterio-venous hemofilration; CVVH, con-
tinuous veno-venous hemofiltration; CVVHD, continuous veno-

venous hemodialysis; CVVHDF, continuous veno-venous he-
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MOST, multi-organ support therapy; CPFA, coupled plasma  
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corporeal liver support systems [9] (Fig. 1). Gradually, the 
status of RRT was elevated from simple renal support to 
a platform facilitating individualized multiple organ sup-
port (Fig. 2).

Rationale for ECOS in COVID-19 Patients

COVID-19 patients admitted to the ICU display a 
range of symptoms and organ dysfunction of varying de-
grees severity. While the majority have pneumonia with 
single-organ failure, others suffer from a significant de-
rangement of the immune system, producing a cytokine 
storm and organ damage consequent to cellular injury. 
Furthermore, severe coagulation disorders sometimes 
mimics disseminated intravascular coagulation. Continu-
ous and intermittent modalities are not “all or none” ap-
proaches to the provision of RRT [12]. Rather, a chosen 
modality of RRT necessitates thoughtful application to 
deliver the right therapy for the right patient at the right 
time. It is also important to recognize that patients may 
need to transition across modalities. There has been much 
debate about the apparent lack of differences in efficacy 
and effectiveness of continuous and intermittent modali-
ties in clinical trials, and no specific evidence is provided 
for COVID-19 patients. However, confidence in infer-
ences from these data for patient care is limited due to 
challenges in trial design (i.e., overestimated treatment ef-
fects), trial performance (i.e., quality of RRT applied 
across trials), selection bias of patients enrolled (i.e., lack 
of equipoise to enrol very sick patients), and non-patient-
related biases guiding practice (i.e., clinical service and 
costs). As such, continuous and the various forms of in-
termittent therapies should be considered complementa-
ry, recognizing neither modality will likely ever show clear 
evidence of survival advantage across all patients [7, 14, 
15]. In addition, all RRT modalities have important ad-
verse effects. They are unselective, resulting in unrecog-
nized losses of electrolytes, nutrients, and drugs, including 
antibiotics. Where available, therapeutic drug monitoring 
should be considered. Other adverse effects include com-
plications related to line insertion and side effects from 
anticoagulation. Finally, RRT does not provide any of the 
endocrine and metabolic functions of the kidneys. Despite 
the above considerations, there are particular clinical cir-
cumstances where a specific RRT modality would be pref-
erable [7, 16]. In COVID-19 patients with marked hemo-
dynamic instability and/or refractory fluid overload, ag-
gressive extracorporeal ultrafiltration can precipitate or 
worsen hypotension or decrease cardiac output or both, 

and delay recovery. Rapid shifts in blood osmolality may 
precipitate dangerous iatrogenic complications [17]. In 
these circumstances, there is a strong physiological ratio-
nale for initial support with CRRT to offer greater hemo-
dynamic tolerance, consistency in ultrafiltration, and less 
metabolic and osmotic fluctuations [7, 16]. This extends 
to patients supported by concomitant ECOS (i.e., VV- 
ECMO for severe respiratory failure), where initial thera-
py with CRRT is better tolerated [16, 18]. Alternatively, 
forms of prolonged and conventional intermittent RRT 
have an important complementary role in the support of 
critically ill patients with COVID-19 infection. These pa-
tients may frequently require mobilization and pronation 

ECCO2R

VA-ECMOVV-ECMO

MARS SCUF

CVVH
CVVHD
CVVHDF
SLED

PF/PEHP

AHD

VV

V

A

Fig. 2. Schematic representation of different ECOS systems. ECOS, 
extracorporeal organ support; CVVH, continuous veno-venous 
hemofiltration; CVVHD, continuous veno-venous hemodialysis; 
CVVHDF, continuous veno-venous hemodiafiltration; CRRT, 
continuous renal replacement therapy; SLED, slow extended di-
alysis; SCUF, slow continuous ultrafiltration; CPFA, coupled plas-
ma filtration adsorption; ECCO2R, extracorporeal CO2 removal; 
VA-ECMO, veno-arterial extracorporeal membrane oxygenation; 
VV-ECMO, veno-venous extracorporeal membrane oxygenation; 
AHD, adsorption hemodialysis; HP, hemoperfusion; PF, plas-
mafiltration; PE, plasma exchange.
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to improve pulmonary gas exchange, and in these circum-
stances, treatments of 8–12 h may represent a good com-
promise between continuous and intermittent modalities. 
Similarly, among patients recovering from critical illness, 
the transition from CRRT to prolonged intermittent RRT 
may be advantageous, although no data are available on 
survival, kidney recovery, or long-term dialysis depen-
dence [19–23]. COVID-19 patients have a tendency to de-
velop a severe inflammatory state and possibly a cytokine 
release syndrome that may affect kidney function down-
stream in the time course of the syndrome. Although the 
optimal time for RRT initiation remains uncertain, obser-
vation of frequent episodes of oliguria and dangerous  
fluid overload during ICU stay suggests an early applica-
tion, especially in case of inability to maintain adequate 
fluid balance. Sometimes RRT and ECMO are simultane-
ously run, and thus, an effort should be made in the future 
to merge these therapies into a unified platform [24] to 
reduce nurse workload and risk of errors due to poor com-
patibility or integration of different systems.

ECOS Modifications in Relation to COVID-19 
Requirements

In COVID-19 patients, recent platforms allow circuit 
adjustment to perform different ECOS techniques be-
sides RRT. Although there are only few reports of liver 
dysfunction in COVID-19 patients, special extracorpo-
real therapies are available for liver support, if needed 
[25–28]. Conjugated or unconjugated bilirubin, bile ac-
ids, phenols, fatty acids, cytokines, ammonia, or amino 
acids can be effectively removed by high-volume plasma-
pheresis, improving liver function through amelioration 
of the inflammatory response [29]. For the same purpose, 
double plasma molecular adsorption system and sequen-
tial half-dose plasma exchange have been utilized [30]. 
The use of hemoperfusion is expanding, thanks to new 
biocompatible sorbent cartridges. Removal of humoral 
mediators and cytokines with different columns (Cyto-
Sorb®, Cytosorbents, NJ, USA, and HA380, Jafron, Chi-
na) has been beneficial and improved survival in different 
conditions [31, 32].

Supportive therapy and lung-protective ventilation 
are the current standard of care for COVID-19 patients 
with severe respiratory impairment and acute respiratory 
distress syndrome (ARDS). This approach may limit ven-
tilation-induced lung injury, but it may be associated with 
insufficient correction of hypercapnia and respiratory ac-
idosis [33].

The technique of ECCO2R has been introduced for hy-
percapnic respiratory failure not requiring significant ox-
ygen support. In general, CO2 is produced at a rate of 3–6 
mL/kg/min (1 L arterial blood with a partial CO2 40 mm 
Hg contains 500 mL CO2) and has a steep linear dissocia-
tion curve without saturation. As such, CO2 diffuses from 
blood more efficiently than O2 [34, 35]. The effective 
amount of extracorporeal CO2 removal from patients de-
pends on blood flow. Studies have shown progressive CO2 
removal until blood flow of 800–1,000 mL/min where a 
ceiling is reached. Low blood flow ECCO2R devices (<0.5 
L/min) achieve partial CO2 removal. In the SUPERNOVA 
study, ECCO2R facilitated ultra-protective ventilation 
[36]. ECCO2R in combination with RRT has the potential 
to limit respiratory stress further by removing excess CO2 
and compensating for respiratory acidosis, thus facilitat-
ing reduction in tidal volume (<6 mL/kg) during lung-
protective ventilation strategies [37, 38]. This may be par-
ticularly appealing in patients with ARDS and concomi-
tant AKI, where compensatory renal mechanisms are less 
effective in regulating acid-base homeostasis during hy-
percapnic acidosis. To date, several ECCO2R devices are 
available that can be used in conjunction with RRT hard-
ware using variable blood flows [34, 39–52]. Techniques 
for improving CO2 removal with low blood flow devices 
include (i) RRT using low bicarbonate dialysate (as up to 
65% CO2 is carried as dissolved bicarbonate ions in plas-
ma and cleared at a rate close to that of urea); (ii) blood 
acidification during RRT (to increase CO2 release) and 
subsequent blood alkalization to correct acidosis [53];  
(iii) coating of the membrane oxygenator with carbonic 
anhydrase (to convert bicarbonate and carbonic acid to 
CO2 and water) [54]; and (iv) electrodialysis coupled with 
a membrane oxygenator (to modulate blood electrolyte 
concentrations and promote bicarbonate conversion to 
CO2) [51]. Several clinical trials are ongoing to determine 
whether VV extracorporeal CO2 removal (VV-ECCO2R) 
and lower tidal volume mechanical ventilation improves 
outcomes and is cost-effective, in comparison with stan-
dard care in patients receiving mechanical ventilation for 
acute hypoxemic respiratory failure.

Extracorporeal Therapies in Cytokine Release 
Syndromes

Although bacterial sepsis is not a common feature in 
COVID-19 patients, the immune response to the virus 
may lead in some patients to a similar pathophysiological 
condition of a “cytokine storm,” that is, a severe cytokine 
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release syndrome (CRS) with consequent organ dysfunc-
tion. Further organ damage may be induced by intravas-
cular coagulation or micro/macro-thrombosis. Thus, 
life-threatening organ dysfunction caused by a dysregu-
lated host response to infection depends not only on sys-
temic inflammation due to innate immunity but also on 
a possible severe immunosuppression due to adaptive 
immunity. A pathophysiological rationale for extracor-
poreal therapies to restore “immune homeostasis” in CRS 
of different origin has been described [55]. Cascade he-
mofiltration, HVHF, plasmapheresis, hemoperfusion, 
CPFA, high-adsorption hemofiltration, and HCO/medi-
um cut-off (MCO) membranes have been proposed based 
on a pathophysiological rationale of cytokine and chemi-
cal mediator removal/modulation. Interestingly, in April 
2020, the FDA temporarily authorized the emergency use 
of CytoSorb 300 mL device for the management of CRS 
in COVID-19 patients [56]. Based on bench performance 
testing and reported clinical experience, the FDA con-
cluded that the CytoSorb device may be effective at treat-
ing certain patients with confirmed COVID-19 by re-
moving various pro-inflammatory cytokines from their 
blood. Therefore, these therapies, although considered as 
“under scientific investigation,” “salvage,” or “compas-
sionate use” interventions, still represent an option for 
severe CRS and, in particular, for COVID-19 patients 
where pharmacological alternatives are lacking. The 
mechanisms by which these techniques might exert ben-
eficial effects remain poorly understood. The nonspecific 
or specific removal of some damage-associated molecular 
patterns and/or pathogen-associated molecular patterns 
most likely plays a key role in the modulation of the in-
flammatory response to sepsis. This removal may result 
in a decrease of the peaks of cytokine concentrations and/
or a modification of the cytokine/chemokine ratio from 
the tissues to the blood, positively impacting the leuko-
cyte trafficking [57, 58]. However, patients are not ho-
mogenous in terms of their inflammatory phenotype and 
have widely varying levels of cytokines in their blood (e.g., 
IL-6 can range from <10 to >1 million pg/mL) [59]. Ap-
plying blood purification to all patients may be beneficial 
for some and have no effect or even be injurious to others. 
Therefore, specific criteria should be defined. Other 
mechanisms such as direct adsorption of activated leuko-
cytes and other cells involved in the immune response are 
also possibly involved [60]. CD14 expression on mono-
cytes, oxidative burst, and the phagocytosis capacity of 
granulocytes may represent another mechanism. While 
HVHF was able to prevent in vitro sepsis-induced endo-
toxin hypo-responsiveness in animals [61], in humans, 

HVHF and a HVHF cascade system did not result in sur-
vival benefits [62, 63]. CPFA has also been utilized to in-
terfere with the host immune response by removing me-
diators and/or by modifying immune cell phenotype and 
function. In a pilot study in septic patients, CPFA was 
more efficient than HVHF in reversing sepsis-induced 
immunoparalysis [64]. It increased the expression of 
HLA-DR on monocytes and restored lipopolysaccharide-
induced TNF production. However, recently, the COM-
PACT-2 trial (NCT 01639664), evaluating CPFA in septic 
shock, was prematurely stopped due to increased early 
mortality in patients receiving CPFA compared to the 
control group. Plasmapheresis, plasma exchange, and re-
lated techniques have not been extensively evaluated for 
this indication. Nevertheless, it has been suggested that 
these therapies might be beneficial in patients with Gram-
negative sepsis and when initiated early [65]. Nonethe-
less, no RCTs have been able to demonstrate a beneficial 
effect. Recently, the use of double plasmafiltration mo-
lecular adsorption system has been described for the 
above-mentioned indications in a small trial [30]. Hemo-
perfusion is a method of blood purification based on the 
interaction between a sorbent and target molecules. Sev-
eral types of hemoperfusion cartridges, targeting endo-
toxins or cytokines, are available and are currently as-
sessed across the world. Zhou et al. [66] reported in a 
meta-analysis that the beneficial effect of blood purifica-
tion on mortality was mainly driven by the results of stud-
ies assessing hemoperfusion with polymyxin-B (PMX-
HP, Toraymyxin®, Japan). In addition to hemodynamic 
and respiratory improvements, the EUPHAS trial sug-
gested a survival benefit for septic patients receiving this 
therapy [67]. Unfortunately, the subsequent ABDOMIX 
and EUPHRATES trials did not confirm these promising 
findings [68, 69]. In a post hoc analysis of EUPHRATES 
however, patients with septic shock and an endotoxin ac-
tivity assay ≥0.6 to 0.89 had significant benefits with 
PMX-HP treatment in the form of mean arterial pressure, 
ventilator-free days, and mortality [70]. A large RCT with 
CytoSorb® (Cytosorbents, NJ, USA) involving 100 pa-
tients with sepsis/septic shock and acute lung injury 
found 5–18% single-pass removal of IL-6, but no lower-
ing of IL-6 levels with treatment [71]. Another study in 
30 patients comparing CytoSorb® versus standard care 
during cardiopulmonary bypass surgery showed no de-
crease in pro- or anti-inflammatory cytokines nor an im-
provement in relevant clinical outcomes [72]. In vitro 
measurement of 27 inflammatory mediators compared 
CytoSorb® with  a PMX-HPng device and a recently de-
veloped adsorptive hemofiltration membrane (oXiris®) 
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[73]. The study showed that oXiris® was the only device 
to remove both endotoxin and cytokines with similar en-
dotoxin removal to PMX-HP and similar cytokine re-
moval to CytoSorb®. However, to date, no RCTs  explor-
ing the oXiris® membrane have been performed. Filters 
with larger pore size allowing better removal of middle 
molecules in vitro have also been proposed for blood pu-
rification in sepsis [74]. However, a recent double-blind 
RCT found no beneficial effect in ICU patients with MOF 
[75]. A series of reports have also been published on the 
utility of hemoperfusion with neutro-macroporous resin 
device (HA-330/380, Jafron, China) in patients with sep-
sis [76, 77]. Beneficial effects seem to be related to a sig-
nificant removal of circulating cytokines. COVID-19 pa-
tients may have superimposed sepsis; however, the mech-
anism of organ damage seems to be quite similar to the 
immune dysregulation and the cytokine release syn-
drome observed in septic patients. For this reason, tech-
niques such as PMX-HP, CytoSorb, and HA380 cartridge 
are used in COVID-19 patients as predicate therapies. 
Single-center reports of beneficial effects and reduced 
progression of the disease toward multiple organ dys-
function have been presented in meetings, but solid evi-
dence is still lacking. There is also missing evidence on the 
use of drugs of any type for the virus infection. For the 
moment, the pathophysiological rationale is the only rea-
son to suggest the application of these methods, and a 
case-by-case evaluation is advised, although if such treat-
ments are being considered, it seems logical to apply them 
early [55].

Native and Artificial Organ Interactions in COVID-19 
Patients

COVID-19 infection may lead to a cascade with a CTS-
mediated multiple organ dysfunction. While organ cross-
talk has been well described in the literature, the effects of 
different types of ECOS on native organ systems are less 
well known [9]. For example, more than 70% of patients 
receiving ECMO develop AKI, and the majority are treat-
ed with RRT [18]. Although there are multiple reasons for 
AKI in patients who need ECMO, the exact contribution 
from ECMO support per se is unknown. Potential con-
tributing factors may be hemolysis, malposition of the 
cannula leading to renal congestion, iatrogenic plaque 
rupture during arterial cannulation, and inflammatory 
reactions in response to blood contact with an artificial 
membrane. There may also be other more indirect effects; 
for instance, the pharmacokinetics of antibiotics and sed-

atives may be altered during ECOS, leading to under- and 
overdosing [9]. The interaction between different types of 
artificial organ support needs also to be considered. For 
instance, ECMO flow is often difficult to maintain during 
rapid volume removal, so slowing fluid removal with 
CRRT is usually better tolerated by both the patient and 
the ECMO circuit. Detailed knowledge of the advantages 
and drawbacks of combining different types of ECOS and 
their risks and benefits is essential [18].

Rationale for Extracorporeal Therapies in COVID-19 
Patients

During the COVID-19 pandemic, several patients ad-
mitted to the ICU may develop severe MOF at a later stage 
of the illness. Direct kidney involvement in COVID-19 
infection has an overall low prevalence [78], but when 
present, it requires specific kidney support and restora-
tion of physiological targets, allowing for recovery and 
repair. Several possible pathways have been identified, 
possibly leading to kidney damage. These have suggested 
the use of extracorporeal support and different blood pu-
rification strategies to prevent organ damage, to protect 
from further insults, and to support organ dysfunction 
[1]. A significant proportion of COVID-19 patients ad-
mitted to the ICU develop a CRS also known as “cytokine 
storm,” with capillary leak syndrome and lung, heart, and 
kidney dysfunction. Among other mediators, interleu-
kin-6 typically increases together with ferritin and C-re-
active protein, and this is considered also a risk factor for 
developing ARDS [79]. Furthermore, the clinical picture 
is characterized by severe hypercoagulability. It has been 
suggested that the use of invasive mechanical ventilation 
and ECMO may further stimulate the inflammatory re-
sponse. Cytokine overproduction is involved in lung-kid-
ney and heart-kidney bidirectional interaction. Acute vi-
ral cardiomyopathy may in fact contribute to renal con-
gestion and hypoperfusion, while renal medullary 
hypoxia in ARDS represents an additional insult to tubu-
lar cells [80–82]. Fluid expansion may lead to positive flu-
id balance in COVID-19 patients with detrimental effects 
on pulmonary gas exchange, cardiac function, and ulti-
mately kidney function. Finally, superimposed infections 
may occur during ICU stay. In case of COVID-19 infec-
tion and CRS, with suspected or confirmed superimposed 
Gram-negative bacterial infections, the use of PMX-HP 
is indicated in the early phases to provide endotoxin ad-
sorption [10]. PMX-HP should be used for 2 subsequent 
days. If CRS is present, this treatment should be followed 
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by methods for cytokine adsorption (CytoSorb, Cytosor-
bents, NJ, USA; HA-380, Jafron, China; and oXiris, Bax-
ter, Deerfield, IL, USA), and if organ support is required, 
CRRT should be implemented in conjunction or after-
ward. Such treatment of endotoxin removal, cytokine re-
moval, and organ support along the course of the ICU 
stay is referred to as sequential extracorporeal therapy. 
Thus, ECOS represents the perfect combination of tech-
niques to provide blood purification in COVID-19 pa-

tients [1, 83] (Fig. 3). Specifically, for cytokine removal, 
different approaches have been suggested: (a) direct he-
moperfusion using a biocompatible sorbent; (b) plasma 
adsorption on a resin after plasma separation from whole 
blood; (c) CRRTs with hollow fiber filters with adsorptive 
properties; (d) high-dose CRRT with MCO or HCO 
membranes. These therapies find a rationale in the pre-
vention of organ damage induced by the CRS associated 
with severe COVID-19 infections [1, 79–83].
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Fig. 3. Pathways of kidney damage and proposed treatments in 
COVID-19 infections. Didactically 3 broad aspects are involved in 
COVID-19-associated AKI. Bidirectional involvement of each ele-
ment occurs, represented by Set Theory and the presence of inter-
sections. Treatment strategies also influence different elements si-
multaneously. a Neutro-macroporous resin adsorbing beads mag-
nified picture. b Bead on transmission electron microscopy.  
c Cytokine release syndrome and other triggers for cytokine gen-
eration. d MCO has more uniformity in pore size distribution and 
pore density; these characteristics enable the membrane to effec-
tively remove middle molecules in the range of most cytokines 

with tolerable albumin loss. e ECMO circuit. f Filter used in CRRT 
for fluid balance control, removal of nephrotoxins, correction of 
hyperkalemia, and metabolic acidosis. AKI, acute kidney injury; 
AV ECMO, arteriovenous ECMO; β2MG, β2 microglobulin; 
CRRT, continuous renal replacement therapy; CVVH, continuous 
veno-venous hemofiltration; ECCO2R, extracorporeal carbon di-
oxide removal; ECMO, extracorporeal membrane oxygenation; 
HCO, high cut-off; MCO, medium cut-off membrane; IAH, intra-
abdominal hypertension; IL, interleukin; kDa, kilodalton; LVAD, 
left ventricular assist device; TNF, tumor necrosis factor; VV 
ECMO, veno-venous ECMO.



Ronco et al.Blood Purif8
DOI: 10.1159/000508125

Practical Recommendation for Critically Ill COVID-19 
Patients

When extracorporeal therapies are prescribed in  
COVID-19 patients, we recommend the use of jugular 
double-lumen catheters of adequate size to allow sufficient 
blood flow regardless of type of treatment. It is fundamen-
tal to anchor the catheter firmly to avoid accidental discon-
nection during mobilization and pronation as frequently 
required in these patients. A prothrombotic status requires 
incremental dosage of anticoagulation both to maintain 
circuit patency and to manage the thrombophilia of the 
patient. In the case of unfractionated heparin, we start with 
10 IU/kg/h, but in some patients, a higher dosage of up to 
15 and 20 IU/kg/h may be required to ensure circuit pa-
tency. Independent of extracorporeal therapy, patients 
may be treated with low molecular weight heparin to pre-
vent episodes of micro- or macro-embolism which is fre-
quently observed as a complication of COVID-19 infec-
tion. Blood flows above 150 mL/min and the use of diffu-
sive techniques (CVVHD) with minimal filtration fraction 
further help avoiding circuit clotting. If long-term treat-
ment is planned, regional citrate anticoagulation can be 
prescribed, although no evidence of superior outcomes has 
been provided. Furthermore, some centers find this tech-
nique too complicated or requiring too many interventions 
at the bedside. COVID-19 areas are often already over-
whelmed by procedures and further nurse load should be 
avoided. If possible, later generation CRRT machines 
should be used with the possibility of modifying circuit 
characteristics during treatment or directing spent dialy-
sate directly to the drain, avoiding frequent bag changes 
[84]. According to current experience and in the absence 
of any specific therapy besides supportive measures, we 
suggest that cytokine removal strategies should be reserved 
for COVID-19 patients with evidence of high circulating 
cytokines such as IL-6 and IL-8, a biochemically deter-
mined inflammatory status, high SOFA score, clinical 
symptoms of hemodynamic instability requiring vasopres-
sors, and initial signs of immune dysregulation or disor-
ders of coagulation cascade. Markers such as plasma fer-
ritin or urinary biomarkers of kidney stress may also be 
useful to identify cases of hyper-inflammation. Clinical cri-
teria alone may be surrogates of hyper-inflammation, but 
they should be evaluated case by case. In the future, genet-
ic profiling may guide the initiation of this therapeutic 
strategy for specific patients. If PMX-HP is indicated for 
suspected sepsis (high procalcitonin and/or positive bacte-
rial culture) or confirmed by elevated endotoxin activity 
assay, 2-h sessions in 2 subsequent days are advised. A third 

session might be required in some patients. These sessions 
may or may not be followed by hemoperfusion with Cyto-
Sorb or HA-380. If hemoperfusion is indicated for remov-
al of cytokines, multiple sessions can be scheduled in sub-
sequent days. In all cases, anticoagulation should be pro-
vided to maintain circuit patency, and a blood flow rate  
higher than 120 mL/min should be prescribed. In addition, 
oXiris or polymethylmetacrylate membranes can also be 
utilized in CRRT mode for the purpose of cytokine remov-
al. When RRT is indicated, this can be performed with cur-
rent membranes, with HCO or MCO membranes both in 
continuous or intermittent modalities [1, 13, 79–89]. Due 
to frequent mobilization and pronation, patients may be 
treated with prolonged intermitted sessions (PIRRT) to al-
low nursing maneuvers. Because of severe hemodynamic 
instability and the need to control the patients' fluid bal-
ance, fluid removal should be carefully scheduled to avoid 
hypotension that could worsen kidney injury or delay re-
covery. In the absence of established drugs or vaccines for 
COVID-19, the pathophysiological rationale beyond typi-
cal supportive therapies, such as ventilation, may suggest 
the application of ECOS techniques in patients who re-
spond to clinical or biochemical criteria of eligibility. We 
are fully aware that these recommendations are not yet 
based on solid evidence but rather on clinical experience 
matured on the field. Specific prevention and protection 
measures to avoid development of organ failure from cy-
tokine storm, or targeted organ support therapies might 
help critically ill patients with COVID-19 where there is 
little or nothing except supportive treatment. Clinical con-
ditions (shock-like syndrome with vasopressor require-
ment, capillary leak syndrome, myocarditis, and ARDS) 
and laboratory criteria (IL-6 and inflammatory markers) 
and AKI biomarkers could represent the triggers to imple-
ment single or various extracorporeal treatments in se-
quence. In COVID-19 patients, all these new features and 
advances may represent a real option at a time when phar-
macological and vaccine options are close to zero.
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